Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.06.479285

ABSTRACT

Background: The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. Methods: 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. Results: Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. Conclusions: BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.02.22268634

ABSTRACT

The highly mutated SARS-CoV-2 Omicron (B.1.1.529) variant has been shown to evade a substantial fraction of neutralizing antibody responses elicited by current vaccines that encode the WA1/2020 Spike immunogen, resulting in increased breakthrough infections and reduced vaccine efficacy. Cellular immune responses, particularly CD8+ T cell responses, are likely critical for protection against severe SARS-CoV-2 disease. Here we show that cellular immunity induced by current SARS-CoV-2 vaccines is highly cross-reactive against the SARS-CoV-2 Omicron variant. Individuals who received Ad26.COV2.S or BNT162b2 vaccines demonstrated durable CD8+ and CD4+ T cell responses that showed extensive cross-reactivity against both the Delta and Omicron variants, including in central and effector memory cellular subpopulations. Median Omicron-specific CD8+ T cell responses were 82-84% of WA1/2020-specific CD8+ T cell responses. These data suggest that current vaccines may provide considerable protection against severe disease with the SARS-CoV-2 Omicron variant despite the substantial reduction of neutralizing antibody responses.


Subject(s)
Severe Acute Respiratory Syndrome , Breakthrough Pain
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.02.21267198

ABSTRACT

Previous studies have reported that a third dose of the BNT162b2 (Pfizer) COVID-19 vaccine increased antibody titers and protective efficacy. Here we compare humoral and cellular immune responses in 65 individuals who were vaccinated with the BNT162b2 vaccine and were boosted after at least 6 months with either Ad26.COV2.S (Johnson & Johnson; N=41) or BNT162b2 (Pfizer; N=24).


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428384

ABSTRACT

The novel SARS_CoV-2 virus, prone to variation when interacting with spatially extended ecosystems and within hosts1 can be considered a complex dynamic system2. Therefore, it behaves creating several space-time manifestations of its dynamics. However, these physical manifestations in nature have not yet been fully disclosed or understood. Here we show 4-3 and 2-D space-time patterns of rate of infected individuals on a global scale, giving quantitative measures of transitions between different dynamical behaviour. By slicing the spatio-temporal patterns, we found manifestations of the virus behaviour such as cluster formation and bifurcations. Furthermore, by analysing the morphogenesis processes by entropy, we have been able to detect the virus phase transitions, typical of adaptive biological systems3. Our results for the first time describe the virus patterning behaviour processes all over the world, giving for them quantitative measures. We know that the outcomes of this work are still partial and more advanced analyses of the virus behaviour in nature are necessary. However, we think that the set of methods implemented can provide significant advantages to better analyse the viral behaviour in the approach of system biology4, thus expanding knowledge and improving pandemic problem solving.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.427998

ABSTRACT

We engineered three SARS-CoV-2 viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion+N501Y+D614G from UK; and E484K+N501Y+D614G from SA. Neutralization geometric mean titers (GMTs) of twenty BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses.

6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.27.428380

ABSTRACT

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26) vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. In this study, we evaluated the immunogenicity and protective efficacy of reduced doses of Ad26.COV2.S. 30 rhesus macaques were immunized once with 1×10 11 , 5×10 10 , 1.125×10 10 , or 2×10 9 vp Ad26.COV2.S or sham and were challenged with SARS-CoV-2 by the intranasal and intratracheal routes. Vaccine doses as low as 2×10 9 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125×10 10 vp were required for protection in nasal swabs. Activated memory B cells as well as binding and neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show evidence of virologic, immunologic, histopathologic, or clinical enhancement of disease compared with sham controls. These data demonstrate that a single immunization with a relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques. Moreover, our findings show that a higher vaccine dose may be required for protection in the upper respiratory tract compared with the lower respiratory tract.


Subject(s)
Adenoviridae Infections
SELECTION OF CITATIONS
SEARCH DETAIL